Cycloadditions of 1-Aza-2-azoniaallene Salts Derived from Coumarin and Camphor

Nasser A. Hassan, Tahia K. Mohamed, and Omaima M. Abdel Hafez
Dokki, Cairo, A. R. Egypt, National Research Centre, Department of Photochemistry and Natural Products
Martin Lutz, Christoph C. Karl, Wolfgang Wirschun, Yaseen A. Al-Soud, and Johannes C. Jochims

Konstanz, Fakultät für Chemie der Universität
Received October 27th, 1997

Abstract

The 1-aza-2-azoniaallene salt $\mathbf{8}$ prepared from 3acetyl coumarin via the hydrazone $\mathbf{6}$ and the (chloroalkyl)azo derivative 7 reacts with nitriles to afford the 3 -(3-chromenyl)-1,2,4-triazolium salts 11a-d. With diisopropylcarbodiimide the triazolium salt 13 and with norbornene a tricyclic pyrazolium salt 14 are obtained. Concurrent to these cycloadditions the by-product 12 is formed by intramolecular cyclization of the cumulene 8. Similarly, the intramolecular cyclization product $\mathbf{1 8}$ is isolated as the sole product when the 1-aza-2azoniaallene salt 17a (prepared from the ethyl carbazone of

camphor by chlorination and treatment of the product 16a with SbCl_{5}) was treated with nitriles, carbodiimides or alkenes. In contrast, 1,2,4-triazolium salts $\mathbf{2 0 a}-\mathbf{c}, \mathbf{2 3 c}$, respectively pyrazolium salts 20d-f, and 1,3,4-thiadiazolium salts 23a,b are obtained by reaction of the 1 -aza-2-azoniaallene salt 17b with nitriles, respectively alkenes, alkynes, diisopropylcarbodiimide, and isothiocyanates. The constitutions of two of these products (20e, 23a) were secured by X-ray structural analysis.

The novel heterocumulenes 1-aza-2-azoniaallene salts $\mathbf{1}$ and 1,3-diaza-2-azoniaallene salts $\mathbf{3}$, readily prepared as reactive intermediates from hydrazones, respectively from 1,3-disubstituted triazenes, have been shown to undergo cycloaddition to many types of multiple bonds [1-9]. Thus, compounds 1 react with nitriles [1, 3, 6, 7], isocyanates [5], carbodiimides [2], as well as with electron-rich alkenes and alkynes [3, 4, 7] to give pyrazolium derivatives $\mathbf{2}$, which frequently undergo successive transformations. In contrast, cumulenes 3 neither react with nitriles, nor with isocyanates. However, especially smooth reactions were observed with both electron-rich and electron-deficient alkenes affording 4,5 -dihydro-1,2,3-triazolium salts $4[8,9]$. So far only salts $\mathbf{1 , 3}$ with simple substituents, such as methyl, phenyl etc. were used as reactants for cycloadditions with conventional unsaturated compounds (acetonitrile, cyclopentene, 3 -hexyne etc.). It seemed of interest to study the applicability of the cycloaddition protocol for heterocumulenes 1, $\mathbf{3}$ derived from natural products with more sophisticated unsaturated reactants. Recently, we reported preparations of C - and N -glycosides by cycload-

1,3-diaza-2-azoniaallene ion

Scheme 1

dition of $\mathbf{1 , 3}$ to glycosyl nitriles and a glucosyl alkyne [10]. In this communication we describe cycloadditions
of heterocumulenes 1 derived from 3-acetyl coumarin 5 and from camphor.

The hydrazone 6 prepared from 3-acetyl coumarin 5 was oxidized to the (chloroalkyl)azo compound 7 with tert-butyl hypochlorite (Scheme 2) [11-13]. Treatment of 7 at $-60^{\circ} \mathrm{C}$ with antimony pentachloride in dichloromethane afforded an orange precipitate 8 . On addition of acetonitrile and warming up to room temperature the precipitate dissolved and the color of the reaction mixture changed to brown. Workup afforded the $1 H$-triazolium salt 11a in 71% yield together with a small amount (8%) of the pyrazole 12. Arguments have been put forward according to which formation of triazolium salts such as 11a proceeds via nitrilium salts as intermediates (e.g.9a) undergoing cyclization to $3 H$ triazolium salts (10a) [1,3]. Wagner-Meerwein type $[1,2]$ shift of a methyl group completes the reaction sequence furnishing $1 H$-triazolium salts (e.g. 11a) [1418]. Correspondingly, with pivalonitrile, dimethylcyanamide, and methyl thiocyanate the salts $\mathbf{1 1 b}-\mathbf{d}$ were obtained $(46-90 \%)$. In all cases small amounts of 12 were formed as by-products indicating a concurrent intramolecular reaction of 8 , in which the azo group substitutes the proton in position 4 . Compound $\mathbf{1 2}$ was obtained in 86% yield when the chloro compound 7 was treated with antimony pentachloride in the absence of a nitrile.

A clean reaction took place between 8 and diisopropylcarbodiimide to afford the iminium salt 13 in 87% yield. The ${ }^{1} \mathrm{H} N M R$ spectrum (in $\mathrm{CD}_{3} \mathrm{CN}$) of the crude product showed the presence of two isopropyl groups with diastereotopic methyl groups (doublets for CH_{3} at $1.17,1.29,1.79,1.81 \mathrm{ppm}$ coupled to septets for CH at 3.41 and 4.97 ppm$)$. A singlet for a C-methyl group was found at 3.00 ppm . Recrystallization at $23^{\circ} \mathrm{C}$ from dichloromethane/ether afforded a clean product, however, with a quite different ${ }^{1} \mathrm{H}$ NMR spectrum again showing diastereotopic isopropyl methyl groups and one C-methyl group but no signal for N -methyl (doublets for CH_{3} at $0.92,0.89,1.69,1.70$, septets for CH at 3.13 and 4.71 ppm , singlet for $\mathrm{C}-\mathrm{CH}_{3}$ at 2.66 ppm). According to these spectra, the ${ }^{13} \mathrm{C}$ NMR spectra and the elemental analyses the products must be assigned the structures of geometrically isomeric 3 H -1,2,4-triazolium salts 13. Thus, in contrast to earlier results [2], the $3 H$-triazolium salt $\mathbf{1 3}$ does not rearrange to a $1 H$-triazolium salt by migration of the methyl group from carbon to nitrogen. The reaction of 1-aza-2-azoniaallene salts with carbodiimides was shown [2] to be most likely a twostep process with a cyanamidium salt as intermediate, which closes the ring stereoelectronically controlled [19, 20] in such a way that in the product the imine isopropyl group and the N-aryl group are cis oriented with respect to each other. Obviously, in the case of $\mathbf{1 3}$ recrystallization, even under mild conditions, effects iso-

13

Scheme 2 Reagents and conditions: $\mathrm{Ar}=2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{i}$, ArNHNH ${ }_{2}, \mathrm{EtOH}, \mathrm{AcOH}, 1 \mathrm{~h}$ reflux, 87%; ii, $t \mathrm{BuOCl}, \mathrm{CHCl}_{3}$, $-20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 88 \%$; iii, $\mathrm{SbCl}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$; iv, RCN , $-60^{\circ} \mathrm{C}$ to $23^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathbf{a}: \mathrm{R}=\mathrm{Me}, 71 \% ; \mathbf{b}: \mathrm{R}=t \mathrm{Bu}, 50 \%$; c: $\mathrm{R}=\mathrm{Me}_{2} \mathrm{~N}, 90 \% ; \mathbf{d}: \mathbf{R}=\mathrm{SMe}, 46 \%$.
merization of the primarily formed cis product to the more stable trans isomer shown in Scheme 2.

Reaction of 8 with phenyl isocyanate, cyclohexyl isothiocyanate, phenylacetylene, 1-hexyne or 3-hexyne unisonously afforded the product 12 of an intramolecular cyclization and no traces (NMR) of the expected cycloaddition products. In conclusion, compared to reactions with nitriles and carbodiimides cycloadditions of isocyanates, isothiocyanates and acetylenes to $\mathbf{8}$ are too slow to compete successfully with intramolecular cyclization to furnish 12.

Similarly, only $\mathbf{1 2}$ was isolated when 8 was treated with methylene cyclopentane, 2-methyl-but-2-ene, with vinyl or allyl chloride. However, with the strained alkene norbornene the cycloadduct 14 was obtained as a mixture of the diastereomers (ca $2: 1$) in 92% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum (in $\mathrm{CD}_{3} \mathrm{CN}$) only signals for C methyl groups (2.10 and 2.31 ppm) were observed in agreement with the $3 H$-pyrazolium structure shown.

Resonances for the atoms $\mathrm{H}-5$ of the pyrazolium rings appeared as sharp doublets at $6.10 \mathrm{ppm}(J=6.9 \mathrm{~Hz})$, respectively $6.53 \mathrm{ppm}(J=7.9 \mathrm{~Hz})$ indicating cis relationship to atoms $\mathrm{H}-4$. In the ${ }^{13} \mathrm{C}$ NMR spectrum four signals between 95 and 101 ppm for saturated carbon atoms were assigned to $\mathrm{C}-3$ and $\mathrm{C}-5$ of the pyrazolium rings.

In conclusion, in concert with earlier observations, the rate of reactions of 1-aza-2-azoniaallene cations such as $\mathbf{8}$ with multiple bonds decreases in the order:
nitriles \approx carbodiimides \approx strained alkenes \gg unstrained alkenes, alkynes, isocyanates, isothiocyanates.

No difficulties were encountered in the preparation of the camphor hydrazones $\mathbf{1 5 a , b}$ [21]. Chlorination with tert-butyl hypochlorite afforded the rather sensitive (chloroalkyl)azo compounds $\mathbf{1 6 a}, \mathbf{b}$ as mixtures of the diastereomers. With antimony pentachloride 16a was transformed into colorless crystals, which according to the elemental analysis and the spectra were the oxadiazolium salt 18 (62%). In the IR spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ two strong bands at 1598 and $1661 \mathrm{~cm}^{-1}$ were assigned to $\mathrm{C}=\mathrm{N}$. No absorption between 1690 and $1740 \mathrm{~cm}^{-1}$ for urethane or around $1900 \mathrm{~cm}^{-1}$ for a 1-aza-2-azoniaallene salt were observed. In the ${ }^{13} \mathrm{C}$ NMR spectrum (in $\mathrm{CD}_{3} \mathrm{CN}$) two signals at 162.4 and 165.4 ppm assignable to $\mathrm{C}=\mathrm{N}$ and two signals at 64.6 and 79.4 ppm arising from OCH_{2} and Cl as well as nine resonances for saturated carbon atoms between 13 and 47 ppm are in concert with structure 18. The ${ }^{1} \mathrm{H}$ NMR spectrum (in $\mathrm{CD}_{3} \mathrm{CN}$) showed three singlets for methyl groups and signals for an O-ethyl group. Compound 18 must have been formed from the heteroallene 17a. Attempts to achieve cycloadditions of $\mathbf{1 7 a}$ with nitriles, alkenes, alkynes etc. failed. In all cases only $\mathbf{1 8}$ was isolated.

Scheme 3 Reagents and conditions: $\mathbf{a}: \mathrm{R}=\mathrm{COOEt}$; $\mathbf{b}: \mathrm{R}=$ $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ;$ i, $t \mathrm{BuOCl}, \mathrm{CHCl}_{3},-20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 92$ and 99%; ii, $\mathrm{SbCl}_{5}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$.

In contrast, allene $\mathbf{1 7 b}$, prepared as reactive intermediate from 16b with antimony pentachloride, reacted readily with nitriles, alkenes, alkynes, carbodiimides, and isothiocyanates to afford products 20a-f, 23a-c (Scheme 4).

With acetonitrile, dimethylcyanamide and methyl thiocyanate the cycloadducts 20a-c were isolated (67$90 \%$). With isobutene, respectively norbornene, the dihydropyrazolium salts 20d,e were obtained ($42,96 \%$), and phenylacetylene afforded the pyrazolium salt $20 f$ in 53% isolated yield. Similar to the formation of 11ad, compounds 20a-f must have been formed via intermediates 19. Wagner-Meerwein type [1,2] shift of the tertiary alkyl substituent on $\mathrm{C}-3$ of the triazolium ring furnished 20a-f (Scheme 4).

The structures of compounds $\mathbf{2 0 a}-\mathbf{f}$ follow from their elemental analyses and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. However, the stereochemistry of 20 e could not be derived unambiguously from the NMR spectra. Therefore, 20e was submitted to X-ray structural analysis (see below) confirming the configuration shown in Scheme 4. A different course took the reactions of $\mathbf{1 7 b}$ with cyclohexyl and benzyl isothiocyanate as well as with diisopropylcarbodiimide. In these cases the β-campholeno derivatives 23a-c (54-90\%) were obtained. Reactions of 1-aza-2-azoniaallene cations with isothiocyanates have not been reported so far. Reaction of the isothiocyanates could have occurred either across the $\mathrm{C}=\mathrm{N}$ double bond giving 1,2,4-triazolium salts or across the $\mathrm{C}=\mathrm{S}$ double bond affording 1,3,4-thiadiazolium salts 23a,b. Since we found it difficult to discriminate between these alternatives by NMR spectroscopy, X-ray structural analysis was carried out for 23a (see below) confirming the thiadiazole structure shown.

To explain the formation of 23a-c fragmentation of the primary cycloadduct 19 is assumed to give the tertiary carbenium ion 21.

Wagner-Meerwein rearrangement of a methyl group followed by loss of a proton then furnishes the β-campholene products 23, which after reprotonation afford the salts 23a-c.

From 23a the free base 24 was prepared under mild conditions (82%).

The ${ }^{13} \mathrm{C}$ NMR data for the thiadiazole ring of $\mathbf{2 4}(\mathrm{C}=\mathrm{N}$ 149.7 and 152.0 ppm in CDCl_{3}) are very similar to data reported by L'abbé and coworkers for other 2,3-dihy-dro-2-imino-1,3,4-thiadiazoles [22, 23].

Fig. 1,2 show ORTEP plots for the structures of the cations 20e and 23a as determined by X-ray crystallographic analysis [24]. Selected bond lengths, bond angles and torsional angles are given in Tables 1,2.

The asymmetric unit of the crystal 20 e consists of two independent molecules with rather similar structural data. In Table 1 structural data for only one of the cations are collected. A peculiarity is the long b -axis of 3671 pm of the monoclinic crystal (space group $\mathrm{P} 2_{1}$). With $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation the distances between the reflections along the b -axis became rather small. Only after putting into the calculations a fragment SbCl_{3} of known geometry a solution of the crystal structure by the Pat-

20a-c

SbCl_{6}^{-}
20d

20e

SbCl_{6}^{-}
$20 f$

23a

23b

23c

24

Scheme 4 20a: $R=M e, 72 \% ; 20 b: R=\operatorname{Me}_{2} N, 90 \% ; 20 c: R=M e S, 67 \% ; 20 d: 42 \% ; 20 e: 96 \% ; 20 f: 53 \%$; 23a: 54%; 23b: 68%; 23c: 90%; 24: 82%.

Fig. 1 ORTEP Plot of the cation 20e

Fig. 2 ORTEP Plot of the cation 23a

Tab. 1 Selected bond lengths (pm), bond angles (deg), and torsional angles (deg) of the cation 20e [24]

N2-N3	$143(1)$	N2-N3-C20	$116.9(8)$	N2-C10-C9-C8	$115(1)$
N3-C4	$150(2)$	C4-C9-C10	$103.7(9)$	N2-N3-C4-C5	$-112(1)$
C4-C9	$155(2)$	C9-C10-N2	$112(1)$	N2-N3-C20-C21	$-58(2)$
C9-C10	$148(2)$	C10-N2-N3	$112.8(9)$	N2-N3-C4-C9	$-4(1)$
C10-N2	$129(1)$	C1-N2-N3	$122.6(8)$	N3-C4-C5-C6	$-175(1)$
N2-C1	$155(1)$	N2-N3-C20	$116.9(8)$	N3-C4-C5-C19	$76(1)$
N3-C20	$143(1)$	C15-C1-N2-N3	$163(1)$	N3-C4-C9-C10	$1(1)$
N2-N3-C4	$107.0(8)$	C14-C1-N2-N3	$-87(1$	C20-N3-C4-C5	$117(1)$
N3-C4-C9	$104.2(9)$	C1-N2-N3-C4	$169(1)$	C4-C9-C10-N2	$3(1)$

Tab. 2 Selected bond lengths (pm), bond angles (deg), and torsional angles (deg) of the cation 23a [24]

S1-C7	$172.2(3)$	N2-C8-S1	$115.2(3$	N2-C8-S1-C7	$-0.9(3)$
C7-N1	$133.5(4)$	C8-S1-C7	$88.3(2)$	C8-S1-C7-N1	$0.2(3)$
N1-N2	$138.5(4)$	S1-C8-C9	$121.0(3)$	C8-S1-C7-N3	$-179.8(3)$
N2-C8	$128.1(4)$	S1-C7-N3	$125.6(3)$	C8-C9-C10-C11	$-115.4(4)$
C8-S1	$175.2(4)$	C7-N3-C18	$124.1(3)$	S1-C7-N3-C18	$3.9(6)$
C7-N3	$131.1(4)$	C7-N1-C6	$125.8(3)$	S1-C7-N1-C6	$179.8(3)$
S1-C7-N1	$109.9(2)$	S1-C7-N1-N2	$0.4(4)$	C7-N1-C6-C1	$80.0(4)$
C7-N1-N2	$116.7(3)$	C7-N1-N2-C8	$-1.0(4)$	C7-N3-C18-C19	$-130.0(4)$
N1-N2-C8	$109.8(3)$	N1-N2-C8-S1	$1.2(4)$	S1-C8-C9-C10	$64.0(4)$

terson method became possible. The structure 20e may be compared with data for other 4,5 -dihydropyrazolium cations [25-27].
The results of the crystal structural analysis of 23a are comparable to X-ray analytical results for other 1,3,4-thiadiazolium salts [28-31]. The narrow angle C7-S1-C8 of $88.3(2)^{\circ}$ is not exceptional.

This work was supported by the Deutsche Forschungsgemeinschaft, by the Deutscher Akademischer Austausch- dienst, and by the Fonds der Chemischen Industrie. We would like to thank Professor Dr. Helmut Fischer and Professor Dr. Gerd Müller for their help with the X-ray structural analyses, and Mr. S. Herzberger for technical assistance.

Experimental

All solvents were dried by standard methods. The experiments were carried out with exclusion of moisture. The melting points are uncorrected. - ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR: Bruker $\mathrm{AC}-250$ and WM250 spectrometers; $\mathrm{CD}_{3} \mathrm{CN} ; 295 \mathrm{~K}$; internal standard TMS; δ in ppm. - IR: Perkin-Elmer FTIR 1600 spectrometer; cm^{-1}. br: broad, d: doublet; dd: doublet of doublets; m: multiplet; sh: shoulder.

X-Ray Diffraction Analysis of Compound 20e [24]

$\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{~N}_{2}\right]^{+} \mathrm{SbCl}_{6}{ }^{-}$, crystal size $0.1 \times 0.2 \times 0.2 \mathrm{~mm}^{3}$, monoclinic, space group $\mathrm{P}_{1}, Z=4, \alpha=808.1(4), b=3670.9(3), c=$ $1015.6(4) \mathrm{pm}, \beta=93.11(2), V=3008(2) \times 10^{6} \mathrm{pm}^{3}, d_{\text {calc }}=$ $1.71 \mathrm{M} \mathrm{g} \mathrm{m}^{-3}, T=233 \mathrm{~K}, \mu_{\mathrm{Mo} 0-\mathrm{K} \alpha}=17.34 \mathrm{~cm}^{-1}, \omega$-scan, 2.01 $\leq 2 \Theta \leq 27.02^{\circ}, 7107$ collected reflections, 6649 independent reflections, 5401 observed reflections $[I>2 \sigma(\mathrm{I})$]. The cell constants and the intensities of the reflections were measured on a Siemens P4 diffractometer with a graphite monochromator, $\lambda_{\mathrm{Mo}-\mathrm{K} \alpha}=71.069 \mathrm{pm}$. The structure was solved by the Patterson method with subsequent difference-Fourier synthesis (DIRDIF-96) and refined using the program SHELXL-93. The hydrogen atoms were fixed on calculated positions [d (C-H) $=0.96-0.98 \mathrm{pm}$ (riding model; refinement together with the attached C atoms). The anisotropic refinement of all other atoms (full-matrix least-squares on F^{2}) led to agreement factors $R(F)=0.053\left[I>2 \sigma(\mathrm{I}], R_{\mathrm{w}}\left(F^{2}\right)=0.078\right.$ (all reflections).

X-Ray Diffraction Analysis of Compound 23a [24]

$\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}\right]^{+} \mathrm{SbCl}_{6}{ }^{-} \cdot \mathrm{CH}_{3} \mathrm{CN}$, crystal size $0.5 \times 0.4 \times 0.3$ mm^{3}, triclinic, space group $\mathrm{P}-1, Z=2, a=1248.1(4), b=$ 1270.4(5), $c=1385.2(4) \mathrm{pm}, \alpha=100.55(3), \beta=106.41(2), \gamma$
$=114.21(3)^{\circ}, V=1806(1) \times 10^{6} \mathrm{pm}^{3}, d_{\text {calc }}=1.58 \mathrm{M} \mathrm{g} \mathrm{m}^{-3}$, $T=253 \mathrm{~K}, \mu_{\mathrm{Mo}-\mathrm{K} \alpha}=15.11 \mathrm{~cm}^{-1}, \omega$-scan, $2.02 \leq 2 \Theta \leq 27.00^{\circ}$, 8033 collected reflections, 7677 independent reflections, 6583 observed reflections $[I>2 \sigma(\mathrm{I})]$. The cell constants and the intensities of the reflections were measured on a Siemens P4 diffractometer with a graphite monochromator, $\lambda_{\mathrm{Mo}-\mathrm{K} \alpha}=$ 71.069 pm . The structure was solved by the Patterson method (DIRDIF-96) with subsequent difference-Fourier synthesis using the program SHELXL-93. The positions of nine hydrogen atoms were fixed on calculated positions $[\mathrm{d}(\mathrm{C}-\mathrm{H})=0.95$ $\mathrm{pm}]$. The other hydrogen atoms were found by differenceFourier synthesis. The anisotropic refinement of all other atoms (full-matrix least-squares on F^{2}) led to agreement factors $R_{1}=$ $0.045[I>2 \sigma(\mathrm{I})], R_{2}=0.053$ (all reflections).

3-Acetylcoumarin (2,4,6-Trichlorophenyl)hydrazone (6)

A mixture of 3-acetyl coumarin ($18.82 \mathrm{~g}, 100 \mathrm{mmol}$) and (2,4,6-trichlorophenyl)-hydrazine $(21.15 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{ml})$ and $\mathrm{AcOH}(2 \mathrm{ml})$ was heated under reflux for 1 h . Cooling, filtration and recrystallization of the residue from $\mathrm{MeCN}(60 \mathrm{ml})$ afforded a yellow crystalline powder $(33.00 \mathrm{~g}$, 87%); m.p. $154-156^{\circ} \mathrm{C}$. $-\mathrm{IR}\left(\mathrm{CCl}_{4}\right) \quad v / \mathrm{cm}^{-1}=1668,1736 .-$ ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.37\left(\mathrm{CH}_{3}\right), 7.35$ (trichlorophenyl), $7.25-7.56(\mathrm{~m}), 8.07(\mathrm{H}-4), 7.42(\mathrm{NH}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=14.2\left(\mathrm{CH}_{3}\right), 116.4,119.3,124.6,126.8,128.3,128.6$, $128.9,131.8,137.7,140.6,145.5,153.9,160.2(\mathrm{C}=)$.
$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: C 53.50 H 2.91 N 7.34
(381.6) found: C 53.49 H 2.92×7.32.
[1-Chloro-1-(2-oxo-2H-chromen-3-yl)ethyl]azo(2,4,6-trichlorobenzene) (7)
In the dark, t - $\mathrm{BuOCl}[32](1.63 \mathrm{~g}, 15 \mathrm{mmol})$ was added dropwise to a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of $6(3.81 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$. After stirring at $0^{\circ} \mathrm{C}$ for 3 h the solvent was evaporated and the residue was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CHCl}_{3}(8 \mathrm{ml})$ to afford a yellow powder $(3.66 \mathrm{~g}, 88 \%)$; m.p. $159-161^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1731 .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right):$ $\delta / \mathrm{ppm}=2.41\left(\mathrm{CH}_{3}\right), 7.40$ (trichlorophenyl), 7.27-7.61(m), 8.10 (aryl). - ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=27.8\left(\mathrm{CH}_{3}\right), 92.3$ $(\mathrm{CCl}), 116.5,118.2,124.7,127.4,127.8,128.8,129.1,132.6$, $134.2,141.4,145.3,153.9,157.7(\mathrm{C}=)$.
$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: C 49.07 H $2.42 \quad \mathrm{~N} 6.73$
(416.1) found: C 48.99 H 2.45 N 7.03.

2,5-Dimethyl-3-(2-oxo-2H-chromen-3-yl)-1-(2,4,6-trichlo-rophenyl)-1H-1,2,4-triazolium Hexachloroantimonate (11a)

A solution of $\mathrm{SbCl}_{5}(2.99 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise to a cold $\left(-60^{\circ} \mathrm{C}\right)$ solution of $7(4.16 \mathrm{~g}$,
$10 \mathrm{mmol})$ and $\mathrm{MeCN}(0.41 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. After stirring at $-60^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 1 h , and finally at $23^{\circ} \mathrm{C}$ for 1 h the solvent was evaporated. The residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. After stirring for $5 \mathrm{~min} \mathbf{1 2}$ $(0.53 \mathrm{~g}, 14 \%)$ was isolated by filtration. The filtrate was evaporated and the residue was stirred in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ for 5 min . Filtration afforded a colorless powder, which was crystallized at $23{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$ to furnish a colorless powder ($5.40 \mathrm{~g}, 71 \%$); m.p. $273-275^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1608,1721(\mathrm{br}) .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right):$ $\delta / \mathrm{ppm}=2.62,3.84\left(\mathrm{CH}_{3}\right), 7.97$ (trichlorophenyl), $7.49-7.95$ (m), 8.75 (aryl). $-{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): $\delta / \mathrm{ppm}=13.6,37.9$ $\left(\mathrm{CH}_{3}\right), 113.5,117.8,118.2,119.0,124.1,126.7,131.5,131.8$, $136.8,142.7,152.8,156.1,156.8,158.1,162.1(\mathrm{C}=)$. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Sb}$ calcd.: C 30.18 H 1.73 N 5.56
(756.2) found: C 30.10 H 1.68 N 5.44 .

5-tert-Butyl-2-methyl-3-(2-oxo-2H-chromen-3-yl)-1-(2,4,6-trichlorophenyl)-1H-1,2,4-triazolium Hexachloroantimonate (11b)
From $\mathrm{Me}_{3} \mathrm{CCN}(0.83 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. After evaporation of the solvent the residue ($3: 1$ mixture of $\mathbf{1 1 b}$ and 12) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ for 5 min . Filtration, evaporation of the filtrate and stirring of the residue in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ for 5 min afforded a pale brown powder (11b, $3.98 \mathrm{~g}, 50 \%$); m.p. 245-247 ${ }^{\circ} \mathrm{C}$. - IR (KBr): $v / \mathrm{cm}^{-1}=1610,1721(\mathrm{br}) .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.40$ $(9 \mathrm{H}), 3.70\left(\mathrm{CH}_{3}\right), 7.96$ (trichlorophenyl), 7.49-7.95 (m's, aryl), $8.78(\mathrm{H}-4) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=28.9(3 \mathrm{C}), 36.8$, $37.3\left(\mathrm{CH}_{3}, \mathrm{C}\right), 113.8,117.9,119.1,126.6,126.8,131.5,132.1$, $136.9,137.1,142.8,153.0,156.2,156.3,158.3,171.1(\mathrm{C}=)$. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Sb}$ calcd.: C 33.10 H 2.40 N 5.26
(798.2) found: C 32.95 H 2.41 N 5.38.

2-Methyl-5-(dimethylamino)-3-(2-oxo-2H-chromen-3-yl)-1-(2,4,6-trichlorophenyl)-1H-1,2,4-triazolium Hexachloroantimonate (11c)
From $\mathrm{Me}_{2} \mathrm{NCN}(0.70 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. Evaporation of the solvent and precipitation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and reprecipitation at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ afforded a yellow powder ($7.07 \mathrm{~g}, 90 \%$); m.p. $156-158{ }^{\circ} \mathrm{C}$. - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=1611,1655,1731 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta / \mathrm{ppm}=3.07(6 \mathrm{H}), 3.50\left(\mathrm{CH}_{3}\right), 7.88$ (trichlorophenyl), $7.47-$ 7.91 (m's, aryl), $8.66(\mathrm{H}-4) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=$ $36.1,40.2(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 114.3,117.8,119.1,126.6,126.9$, $131.3,131.6,136.5,138.3,141.7,152.2,156.2,157.4,158.2$, 160.1 ($\mathrm{C}=$).
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Sb}$ calcd.: C 30.59 H 2.05 N 7.14
(785.2)
found: C 30.81 H 2.13 N 7.31 .
2-Methyl-5-(methylthio)-3-(2-oxo-2H-chromen-3-yl)-1-(2,4,6-trichlorophenyl)-1H-1,2,4-triazolium Hexachloroantimonate (11d)
From $\operatorname{MeSCN}(0.73 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. Some $\mathbf{1 2}$ crystallized form the reaction mixture and was removed by filtration. $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ was added to the filtrate. At $-15^{\circ} \mathrm{C}$ a yellow powder (11d, $3.61 \mathrm{~g}, 46 \%$) crystallized, which can be recrystallized from MeCN to yield yellow prisms; m.p. $262-264^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1608,1723$ (br). $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 333 \mathrm{~K}\right): \delta / \mathrm{ppm}=2.91,3.83\left(\mathrm{CH}_{3}\right), 7.92($ tri-
chlorophenyl), 7.49-7.94 (m's, aryl), 8.81 (H-4). - ${ }^{13}$ C NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 333 \mathrm{~K}\right): \delta / \mathrm{ppm}=14.9,37.1\left(\mathrm{CH}_{3}\right), 112.7,118.3$, 123.2, 126.0, 130.7, 131.2, 136.1, 136.4, 142.4, 152.4, 155.6, $156.4,157.2,166.0(\mathrm{C}=)$.
$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SSb}$ calcd.: C 28.95 H 1.66 N 5.33
(788.2) found: C 28.93 H 1.67 N 5.30 .

3-Methyl-1-(2,4,6-trichlorophenyl)-1H,4H-chromeno[4,3-c] pyrazol-4-one (12)

A solution of $\mathrm{SbCl}_{5}(2.99 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added dropwise to a cold $\left(-60^{\circ} \mathrm{C}\right)$ solution of $7(4.16 \mathrm{~g}$, $10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. After stirring at $-60^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 1 h , and finally at $23^{\circ} \mathrm{C}$ for 1 h the solvent was evaporated, and the residue was crystallized at $23^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(15 \mathrm{ml})$ to afford colorless needles ($3.25 \mathrm{~g}, 86 \%$); m.p. $209-211^{\circ} \mathrm{C}$. - IR (KBr): v/cm ${ }^{-1}=1730$ (br). - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2.72\left(\mathrm{CH}_{3}\right), 7.63$ (trichlorophenyl), $6.80-$ 7.56 (m's, aryl). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=13.1\left(\mathrm{CH}_{3}\right)$, $106.5,111.4,118.2,120.9,124.6,129.3,131.6,133.9,135.9$, 137.6, 143.3, 152.2, 153.3, 157.5 (C=).

$\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$	calcd.: C 53.78	H 2.39	N 7.38
(379.6)	found: C 53.85	H 2.50	N 7.35.

4,5-Dihydro-4-isopropyl-5-(isopropylimino)-3-methyl-3-(2-oxo-2H-chromen-3-yl)-1-(2,4,6-trichlorophenyl)-3H-1,2,4triazolium Hexachloroantimonate (13)

From diisopropylcarbodiimide ($1.26 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for 11a. Evaporation of the solvent and crystallization of the residue at $23{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{ml})$ afforded a yellow powder ($7.32 \mathrm{~g}, 87 \%$); m.p. 184$186^{\circ} \mathrm{C}$ (dec). $-\mathrm{IR}(\mathrm{KBr}): ~ v / \mathrm{cm}^{-1}=1609,1722,1748 .-$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=0.89(\mathrm{~d}, J=6.1), 0.92(\mathrm{~d}, J=6.1)$, $1.69(\mathrm{~d}, J=7.0), 1.70(\mathrm{~d}, J=7.0), 2.66\left(\mathrm{CH}_{3}\right), 3.13$ (sept, $\left.J=6.1\right)$, 4.71 (sept, $J=7.0$) (CH), 7.44-7.85 (m's, aryl), 8.21 (H-4). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=13.1,18.8,19.2,24.37,24.41$ $\left(\mathrm{CH}_{3}\right), 49.3,53.1(\mathrm{CH}), 117.98,118.02,118.2,126.9,129.9$, $131.3,131.5,131.7,136.8,138.1,139.0,140.2,149.6,155.4$, $157.7,163.6(\mathrm{C}=)$.
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Cl}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Sb}$ calcd.: C 34.26 H 2.88 N 6.66
(841.3) found: C 34.40 H 2.84 N 6.55.

5-Methyl-5-(2-oxo-2H-chromen-3-yl)-3-(2,4,6-trichlorophe-nyl)-4-aza-3-azoniatricyclo[5.2.1.0 $0^{2,6}$]dec-3-ene Hexachloroantimonate (14)
From norbornene ($0.94 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for 11a. Precipitation at $23^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100$ ml) afforded a colorless powder ($7.42 \mathrm{~g}, 92 \%$); m.p. 165$167^{\circ} \mathrm{C}(\mathrm{dec})$. - IR (KBr): $v / \mathrm{cm}^{-1}=1711 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta / \mathrm{ppm}=\mathrm{ca} .2: 1$ mixture of the diastereomers: main component: $2.10\left(\mathrm{CH}_{3}\right), 3.13(\mathrm{~d}, J=6.9, \mathrm{H}-6), 6.10(\mathrm{~d}, J=6.9, \mathrm{H}-2), 8.01$ (vinyl); minor component: $2.31\left(\mathrm{CH}_{3}\right), 2.97(\mathrm{~d}, \mathrm{~J} \approx 7, \mathrm{H}-6), 6.53$ (d, $J=7.8, \mathrm{H}-2$), 8.36 (vinyl). - ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta / \mathrm{ppm}=20.3,25.5,26.0,27.7,27.8,29.6,35.1,36.8,39.8$, $41.4,41.8,42.9,50.4,52.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right), 95.3,98.9,99.3$, 100.9 (C-2,5), $117.3-154.8$ (24 lines, $\mathrm{C}=\mathrm{C}$), 159.8, 160.5 ($\mathrm{C}=\mathrm{O}$).
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sb}$ calcd.: C 35.62 H $2.49 \quad \mathrm{~N} 3.46$
(809.3) found: C 35.95 H 2.58 N 3.81.

Ethyl Norbornylidenecarbazate (15a)

A mixture of camphor ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$) and ethyl carbazate $(1.04 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ and $\mathrm{AcOH}(1 \mathrm{ml})$ was boiled under reflux for 9 h . Cooling to $5^{\circ} \mathrm{C}$, and filtration afforded a colorless crystalline powder ($2.10 \mathrm{~g}, 88 \%$); m.p. 141-143 ${ }^{\circ} \mathrm{C} .-[\alpha]_{\mathrm{D}}{ }^{23}=-40^{\circ} ;[\alpha]_{546^{23}}=-48^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}$ $\left(\mathrm{CCl}_{4}\right): v / \mathrm{cm}^{-1}=1757,1716,1701 .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta /$ $\mathrm{ppm}=0.75,0.93,1.07,1.30(\mathrm{t}, J=7.1)\left(\mathrm{CH}_{3}\right), 1.21-2.39(\mathrm{~m} \mathrm{~s}$, $7 \mathrm{H}), 4.24\left(\mathrm{q}, J=7.1, \mathrm{CH}_{2}\right), 7.50(\mathrm{br}, \mathrm{NH}) .-{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta /$ ppm $=11.1,14.6,18.6,19.6,27.3,32.5,33.3,44.0,48.0$, $52.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{C}\right), 61.5\left(\mathrm{br}, \mathrm{OCH}_{2}\right), 154.1$ (br), 166.1 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}$).
$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd.: C 65.52 H 9.31 N 11.75
(238.3) found: C 65.27 H 9.36 N 11.64.

Camphor (2,4,6-Trichlorophenyl)hydrazone (15b)

A mixture of camphor $(15.22 \mathrm{~g}, 100 \mathrm{mmol}),(2,4,6$-trichlorophenyl) hydrazine ($21.15 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{EtOH}(60 \mathrm{ml})$ and conc. $\mathrm{HCl}(2 \mathrm{ml})$ was boiled under reflux for 12 h . After cooling to $5^{\circ} \mathrm{CH}_{2} \mathrm{O}(100 \mathrm{ml})$ was added. The mixture was neutralized with saturated aqueous NaHCO_{3} solution and kept at $5^{\circ} \mathrm{C}$ for 2 h . Filtration and crystallization of the residue at-- $15^{\circ} \mathrm{C}$ from $\mathrm{EtOH}(100 \mathrm{ml})$ afforded a colorless powder $(22.40 \mathrm{~g}, 65 \%)$; m.p. $67-68^{\circ} \mathrm{C} .-[\alpha]_{\mathrm{D}}{ }^{23}=+29^{\circ} ;[\alpha]_{546^{23}}=+37^{\circ}$ (c $=0.5$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}\left(\mathrm{CCl}_{4}\right): v / \mathrm{cm}^{-1}=1757,1716,1701 .-\operatorname{IR}(\mathrm{KBr}):$ $v / \mathrm{cm}^{-1}=1474,3334(\mathrm{NH}) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=0.79$, $0.93,1.02\left(\mathrm{CH}_{3}\right), 1.18-2.03(\mathrm{~m}$'s, 6 H$), 2.48(\mathrm{~m}, 1 \mathrm{H}), 6.68$ (br, NH), 7.26 (aryl). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=11.1,18.7$, $19.5\left(\mathrm{CH}_{3}\right), 27.4,32.4,33.1,44.1,48.1,52.5(\mathrm{C}-1,3-7), 126.2$, 126.7, 128.6, 139.2 (aryl), 166.0 (C-1).
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{~N}_{2}$ calcd.: C 55.59 H 5.54 N 8.10
(345.7) found: C 55.71 H 5.61 N 8.08.

Ethyl [2-Chloro-2-bornyl Jazocarboxylate (16a)

From 15a ($2.38 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 7 (in 10 ml of CHCl_{3}). Evaporation of the solvent afforded a yellow oil ($2.71 \mathrm{~g}, 99 \%$), which was used without further purification. $\operatorname{IR}\left(\mathrm{CCl}_{4}\right): v / \mathrm{cm}^{-1}=1745,1765 .-{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$: mixture of the diastereomers + impurities. $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: main component: $\delta / \mathrm{ppm}=12.2,14.1,20.3,21.1,26.2,30.5,44.0$, $46.6,50.7,56.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{C}\right), 64.6\left(\mathrm{OCH}_{2}\right), 103.0(\mathrm{CCl})$, $162.2(\mathrm{C}=\mathrm{O})$. $-\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}$ (272.8).

[2-Chloro-2-bornyl]azo(2,4,6-trichlorobenzene) (16b)

From 15 a ($3.46 \mathrm{~g}, 10 \mathrm{mmol}$) in the manner described for 7. The yellow oily product ($3.45 \mathrm{~g}, 91 \%$) solidified at $5^{\circ} \mathrm{C}$ to give an orange powder; m.p. $57-59^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=$ $1553,1577 .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=2: 1$ mixture of the diastereomers: $0.88,1.00,1.05,1.06,1.14,1.34\left(\mathrm{CH}_{3}\right), 7.38$, 7.39 (aryl). $-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=10.6,12.4,20.4$, 21.2, 21.3, $22.4\left(\mathrm{CH}_{3}\right), 104.1,106.0(\mathrm{CCl}), 126.7,127.1$, $128.8,128.9,133.2,133.4,145.9,146.4$ (aryl).
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{~N}_{2} \quad$ calcd.: C 50.55 H 4.77 N 7.37
(380.1) found: C 50.86 H 4.88 N 7.44.

4-Ethoxy-1,11,11-trimethyl-3-aza-2-azonia-5-oxatricyclo [6.2.1.02,6]undeca-2(6),3-diene Hexachloroantimonate (18)
From 16a ($2.73 \mathrm{~g}, 10 \mathrm{mmol}$) - with or without MeCN - in the manner described for 11a. The product was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After slow addition of $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ the mix-
ture was kept at $-15^{\circ} \mathrm{C}$ for 12 h . Filtration furnished a colorless powder ($3.56 \mathrm{~g}, 62 \%$); m.p. $165-167^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=-$ $26^{\circ} ;[\alpha]_{546^{23}}=-29^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. $-\mathrm{IR}\left(\mathrm{CCl}_{4}\right): v / \mathrm{cm}^{-1}=$ 1757, 1716, 1701. - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=1598,1661$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.00,1.17,1.52(\mathrm{t}, J=7.1), 1.55$ $\left(\mathrm{CH}_{3}\right), 1.60(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}$, $J=2.0$ and $20.0,1 \mathrm{H}$), 3.32 (ddd, $J=1.9$ and 4.5 and $20.0,1 \mathrm{H}$), 4.69 (q, $\left.J=7.1, \mathrm{OCH}_{2}\right) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=13.6$, $14.3,17.1,23.7,27.7,30.0,40.2,42.0,46.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}\right.$, C), 74.6, $79.4\left(\mathrm{OCH}_{2}, \mathrm{C}-1\right), 162.4,165.4(\mathrm{C}=\mathrm{N})$.
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sb}$ calcd.: C 27.31 H $3.70 \quad \mathrm{~N} 4.90$
(571.8) found: C 27.24 H 3.72 N 5.04.

1,4,11,11-Tetramethyl-3-(2,4,6-trichlorophenyl)-3,5-diaza-2azoniatricyclo[6.2.1.0 2, 6]undeca-2(6),4-diene Hexachloroantimonate (20a)
From 16b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{MeCN}(0.41 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. Crystallization at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$ afforded a colorless powder $(5.19 \mathrm{~g}, 72 \%) ;$ m.p. $205-207{ }^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=-18^{\circ}$; $[\alpha]_{546^{23}}=-20^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=1537$, $1558,1569 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.00,1.20,1.84$, $2.73\left(\mathrm{CH}_{3}\right), 1.67(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.46(\mathrm{~m}, 4 \mathrm{H}), 3.03(\mathrm{dd}$, $J=18.3$ and $1.9, \mathrm{H}-7$), 3.34 (ddd, $J=18.3$ and 4.8 and $1.7, \mathrm{H}-$ 7^{\prime}), 7.82 (q, $J=2.2$, aryl). $\left.-{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CD}_{3} \mathrm{CN}\right): ~ \delta / \mathrm{ppm}=13.6$, $16.5,18.2,24.5,27.8,29.6,40.2,41.9,47.1\left(\mathrm{CH}_{3}, \mathrm{C}-7-11\right)$, 80.1 (C-1), 129.6, 130.9, 131.0, 135.3, 135.4, 140.4 (aryl), 154.3, $155.5(\mathrm{C}=\mathrm{N})$.
$\begin{array}{lllll}\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{Sb} & \text { calcd.: } \mathrm{C} 30.02 & \mathrm{H} 2.94 & \text { N } 5.83 \\ (720.2) & \text { found: } \mathrm{C} 30.14 & \mathrm{H} 3.03 & \text { N } 6.19 .\end{array}$
4-(Dimethylamino)-1,11,11-trimethyl-3-(2,4,6-trichlorophe-nyl)-3,5-diaza-2-azoniatricyclo[6.2.1.0 2,6 $]$ undeca-2(6),4-diene Hexachloroantimonate (20b)
From 16h ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{Me}_{2} \mathrm{NCN}(0.70 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for $11 a$. Precipitation at $23^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$ afforded a colorless powder ($7.09 \mathrm{~g}, 90 \%$); m.p. $156-158{ }^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=-45^{\circ}$; $[\alpha]_{546^{22}}=-57^{\circ}\left(\mathrm{c}=1,0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=$ $1569,1611,1654,1731 .-{ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=0.95$, $1.18,1.75,2.85(6 \mathrm{H})\left(\mathrm{CH}_{3}\right), 1.70(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.45(\mathrm{~m}, 4 \mathrm{H})$, 2.93 (m, H-7), 3.29 (ddd, $J=18.3$ and 5.2 and $2.1, \mathrm{H}-7{ }^{\prime}$), 7.79 (s, aryl). ${ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=14.5,18.1,24.8,28.2$, $30.5,38.6,40.8,42.6,48.2\left(\mathrm{CH}_{3}, \mathrm{C}-7-11\right)$, $79.1(\mathrm{C}-1), 130.8$, $1309,131.2,1353,135.7,140.0$ (aryl), 153.8, $154.8(\mathrm{C}=\mathrm{N})$.
$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Cl}_{9} \mathrm{~N}_{4} \mathrm{Sb}$ calcd.: C 30.46 H $3.23 \quad \mathrm{~N} 7.48$
(749.3) found: C 30.58 H 3.34 N 7.49.

1,11,11-Trimethyl-4-(methylthio)-3-(2,4,6-trichlorophenyl)-3,5-diaza-2-azoniatricyclo[6.2.1.0 2,6 $]$ undeca-2(6),4-diene Hexachloroantimonate (20c)

From 16b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and $\operatorname{MeSCN}(0.73 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for $\mathbf{1 1 a}$. Crystallization at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}) / \mathrm{CCl}_{4}(60 \mathrm{ml})$ and recrystallization at $-15^{\circ} \mathrm{C}$ from $\mathrm{MeCN}(15 \mathrm{ml})$ afforded a colorless crystalline powder ($5.28 \mathrm{~g}, 67 \%$); m.p. $167-169^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=$ $-21^{\circ} ;[\alpha]_{546}^{23}=-25^{\circ}\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=$ 1555,1563 (sh). - ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=0.99,1.20$, $2.06,2.50\left(\mathrm{CH}_{3}\right), 1.69(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{dd}, J=18.6$ and $1.8, \mathrm{H}-7$), 3.39 (ddd, $J=18.6$ and 4.9 and $1.5, \mathrm{H}-7$ '), 7.83 $\left(\mathrm{q}, J=2.2\right.$, aryl), $1.97(\mathrm{MeCN}) .-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=$
$16.9,18.2,19.8,24.6,27.9,30.1,40.1,41.6,47.5\left(\mathrm{CH}_{3}, \mathrm{C}-7-\right.$ 11), 82.2 (C-1), 130.9, 131.0, 131.2, 135.0, 135.3, 140.5 (aryl), 154.2, $157.6(\mathrm{C}=\mathrm{N})$.
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb} \cdot \mathrm{CH}_{3} \mathrm{CN}$ calcd.: C 30.28 H 3.05 N 7.06 (793.3)
found: C 30.06 H 3.18 N 6.89 .
1,4,4,11,11-Pentamethyl-3-(2,4,6-trichlorophenyl)-3-aza-2azoniatricyclo[6.2.1.0 $\left.{ }^{2,6}\right]$-2(6)-undec-2(6)-ene Hexachloroantimonate (20d)
From 16b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and isobutene ($1.68,30 \mathrm{mmol}$) in the manner described for 11a. After evaporation of the solvent the dark brown residue was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(120 \mathrm{ml})$ to furnish a pale brown crystalline powder ($3.09 \mathrm{~g}, 42 \%$); m.p. $176-179^{\circ} \mathrm{C}$ (dec). $[\alpha]_{\mathrm{D}}{ }^{23}=-137^{\circ} ;[\alpha]_{546^{23}}=-177^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=1543,1567,1617 .-{ }^{1} \mathrm{H} \operatorname{NMR}\left[\mathrm{CD}_{3} \mathrm{CN} /\right.$ $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}(2: 1)\right]: \delta / \mathrm{ppm}=1.06,1.09,1.18,1.25,1.48\left(\mathrm{CH}_{3}\right)$, $1.64(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 4 \mathrm{H})(\mathrm{H} 8-10), 2.90(\mathrm{br}, \mathrm{d}, J=22.2,1 \mathrm{H})$, 3.25 (br, d, $J \approx 22,1 \mathrm{H})\left(\mathrm{H}-7,7{ }^{\prime}\right), 3.45$ (AB-q, $\left.J=20.1, \mathrm{H}-5,5^{\prime}\right)$, 7.64 (AB-q, $J=2.4$, aryl). ${ }^{13} \mathrm{C} \mathrm{NMR}\left[\mathrm{CD}_{3} \mathrm{CN} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(2: 1)\right]$: $\delta / \mathrm{ppm}=14.1,18.3,24.3(2 \mathrm{C}), 28.8,29.3,36.5,38.5,40.6$, $47.7,51.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}, \mathrm{C}\right), 68.2(\mathrm{C}-4), 83.9(\mathrm{C}-1), 131.4$, 131.6, 135.8, 136.6, 137.1, 138.4 (aryl), 179.9 (C=N). - MS (FAB,DMSO/m-nitrobenzyl alcohol): m / z 399/401/403(M+ ${ }^{+}$ SbCl_{6}).
$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{Cl}_{9} \mathrm{~N}_{2} \mathrm{Sb}$ calcd.: C 32.67 H 3.56 N 3.81
(735.3) found: C 32.78 H 3.15 N 4.07.

1,11,11-Trimethyl-3-(2,4,6-trichlorophenyl)-3-aza-2-azoniapentacyclo[10.2.1.1 $1^{5,8} .0^{2,10} .0^{4,9}$]hexadeca-2(6)-ene Hexachloroantimonate ($\mathbf{2 0 e}$)
From 16b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and norbornene $(0.94 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. Crystallization at $-15{ }^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ afforded a yellow powder ($7.45 \mathrm{~g}, 96 \%$); m.p. $173-175^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=+110^{\circ}$; $[\alpha]_{546^{23}}=+138^{\circ}\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{v} / \mathrm{cm}^{-1}=$ $1547,1567,1606 .-{ }^{1} \mathrm{H}$ NMR $\left[\mathrm{CD}_{3} \mathrm{CN}^{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(2: 1), 313 K\right]$: $\delta / \mathrm{ppm}=0.96,1.05,1.16\left(\mathrm{CH}_{3}\right), 1.20-2.90(\mathrm{~m} ' \mathrm{~s}, 14 \mathrm{H}), 3.14$ (dt, $J=21.5$ and $3.3, \mathrm{H}-11), 3.80\left(\mathrm{br}, \mathrm{CH}_{2}-16\right), 7.60(\mathrm{q}, J=2.3$, aryl). ${ }^{13} \mathrm{C}$ NMR $\left[\mathrm{CD}_{3} \mathrm{CN} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(2: 1), 313 \mathrm{~K}\right]: \delta / \mathrm{ppm}=15.2$, 18.9, 24.5, 25.0, 28.5, 28.8, 34.8, 35.3, 40.8, 42.6, 43.5, 44.6, $47.6,58.9,74.2\left(\mathrm{CH}_{3}, \mathrm{C}-4-9,11-16\right), 87.3(\mathrm{C}-1), 130.9,131.7$, 135.7, 137.4, 138.1, 140.0 (aryl), 176.4 (C=N). - FAB-MS (DMSO/m-nitrobenzyl alcohol): $m / z 439\left(\mathrm{M}^{+}-\mathrm{SbCl}_{6}\right)$.
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{9} \mathrm{~N}_{2} \mathrm{Sb}$ calcd.: C 35.72 H3.65 N 3.62
(773.5) found: C 35.88 H 3.70 N 3.79.

1,11,11-Trimethyl-4-phenyl-3-(2,4,6-trichlorophenyl)-3-aza-2-azoniatricyclo[6.2.1.02,6]undeca-2(6),4-diene Perchlorate (20f)

$\mathrm{At}-60^{\circ} \mathrm{C}$ a solution of $\mathbf{1 6 b}(3.80 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{PhC} \equiv \mathrm{CH}$ ($1.02 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added dropwise to $\mathrm{AlCl}_{3}(1.33 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. After stirring at $-60^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for 1 h , and finally at $23^{\circ} \mathrm{C}$ for 1 h the solvent was removed and the residue was dissolved in $\mathrm{MeCN}(80 \mathrm{ml})$. At $-5^{\circ} \mathrm{C}$ a solution of $\mathrm{NaClO}_{4}(1.84 \mathrm{~g}$, 15 mmol) in MeCN (20 ml) was added. After stirring for 12 h the suspension was filtered and the solvent was evaporated. The residue was stirred for 10 min in $\mathrm{CHCl}_{3}(80 \mathrm{ml})$. Filtration and evaporation of the solvent afforded a residue, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. After addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$
at $-15^{\circ} \mathrm{C}$ within 12 h a brownish powder precipitated ($2.95 \mathrm{~g}, 53 \%$); m.p. $177-179^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=-23^{\circ}$; $[\alpha]_{546^{23}}=-29^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \quad / / \mathrm{cm}^{-1}=$ $1556,1568 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.13,1.16,1.18$ $\left(\mathrm{CH}_{3}\right), 1.68(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 3.13$ (dd, $J=18.8$ and 1.7, H-7), 3.40 (ddd, $J=2.1$ and 4.3 and 18.8 , H-7'), 7.04 (H-5), $7.35-7.75$ (aryl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): ~ \delta /$ $\mathrm{ppm}=15.6,18.5,25.0,28.4,31.8,41.1,42.2,49.1\left(\mathrm{CH}_{3}, \mathrm{C}-\right.$ 7-11), 85.8 (C-1), 111.4 (C-5), 126.1, 129.6, 130.2, 131.1, $131.3,131.7,132.8,137.5,137.9,141.0,154.3,154.4$ (aryl, C-4,6).
$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$ calcd.: C 52.77 H 4.43 N 5.13 (546.3) found: C 52.65 H 4.47 N 5.00.

2-(Cyclohexylamino)-3-(2,4,6-trichlorophenyl)-5-[(2,3,3-tri-methyl-1-cyclopentenyl)methyl]-1,3,4-thiadiazolium Hexachloroantimonate (23a)
From 16b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and cyclohexyl isothiocyanate $(1.41 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. Evaporation of the solvent afforded a yellow foam, which solidified when stirred at $23{ }^{\circ} \mathrm{C}$ for 12 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(120 \mathrm{ml})$. Yield $4.06 \mathrm{~g}(54 \%)$ of a pale yellow powder; m.p. 105-107 ${ }^{\circ} \mathrm{C}$ (dec). - Slow crystallization at $-15^{\circ} \mathrm{C}$ of $23 \mathrm{a}(0.05 \mathrm{~g})$ from MeCN (1 ml) afforded crystals suitable for X-ray structural analysis. - IR (KBr): $w / \mathrm{cm}^{-1}=1555,1603,3275(\mathrm{NH})$. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.04(6 \mathrm{H}), 1.68(\mathrm{br})\left(\mathrm{CH}_{3}\right)$, $1.09-2.31(\mathrm{~m} ' \mathrm{~s}, 14 \mathrm{H}), 3.31(\mathrm{br}$, coupl. to $8.09,1 \mathrm{H}), 3.73(\mathrm{br}$, CH_{2}), 7.83 (aryl), 8.09 (br, d, $J=7.6, \mathrm{NH}$). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=10.2,25.3,25.4,26.4,30.8,32.3,33.0$, 39.4, $48.0\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{C}\right), 64.4(\mathrm{NCH}), 127.9,129.7,131.3$, 136.5, 140.6, 147.7, 160.8, 169.6 (aryl, $\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$). - MS (FAB, m-nitrobenzyl alcohol): $m / z 470 / 471 / 473\left(\mathrm{M}^{+}-\mathrm{SbCl}_{6}\right)$. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ calcd.: C 33.67 H 3.56 N 5.12 (820.4) found: C 34.04 H 3.61 N 5.36.

2-(Benzylamino)-3-(2,4,6-trichlorophenyl)-5-f(2,3,3-trime-thyl-1-cyclopentenyl)methyll-1,3,4-thiadiazolium Hexachloroantimonate ($\mathbf{2 3 b}$)
From 16b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and benzyl isothiocyanate $(1.49 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. The solvent of the suspension was evaporated and the residue was stirred at $-15^{\circ} \mathrm{C}$ for 12 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$. Filtration afforded a pale yellow crystalline powder ($5.63 \mathrm{~g}, 68 \%$); m.p. $186-188^{\circ} \mathrm{C}$ (dec). - IR (KBr): $/ / \mathrm{cm}^{-1}=1557,1605,3288$ $(\mathrm{NH}) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.00(6 \mathrm{H}), 1.61(\mathrm{t}, J=1.9)$ $\left(\mathrm{CH}_{3}\right), 1.66(\mathrm{t}, J=7.1), 2.22(\mathrm{~m}$, coupl. to 1.61 and 1.66$)$, $3.69,4.64$ (br, coupl. to 8.67) $\left(\mathrm{CH}_{2}\right), 7.37$ (m, phenyl), 7.85 (aryl), 8.67 (br, NH). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=10.2$, $26.3(2 \mathrm{C}), 30.7,33.1,39.4,47.9,53.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{C}\right), 128.1$, $129.4,129.5,130.2,131.3,133.4,136.4,140.8,147.8,161.3$, 170.9 (aryl, $\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$). $-\mathrm{MS}(\mathrm{FAB}, m$-nitrobenzyl alcohol): $m / z 492 / 494 / 496\left(\mathrm{M}^{+}-\mathrm{SbCl}_{6}\right)$.
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{9} \mathrm{~N}_{3} \mathrm{SSb}$ calcd.: C 34.80 H 3.04 N 5.07
(828.4) found: C 34.54 H 2.98 N 5.06.

4-Isopropyl-5-(isopropylamino)-1-(2,4,6-trichlorophenyl)-3-[(2,3,3-trimethyl-1-cyclopentenyl)methyl]-1H-1,2,4-triazolium Hexachloroantimonate (23c)
From 16 b ($3.80 \mathrm{~g}, 10 \mathrm{mmol}$) and diisopropylcarbodiimide $(1.26 \mathrm{~g}, 10 \mathrm{mmol})$ in the manner described for 11a. After
evaporation of the solvent the residue was stirred at $23{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(120 \mathrm{ml})$ to afford a colorless powder (7.25 g, 90\%); m.p. $185-187^{\circ} \mathrm{C}(\mathrm{dec}) .-[\alpha]_{\mathrm{D}}{ }^{23}=0^{\circ}(\mathrm{c}=1.0$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v / \mathrm{cm}^{-1}=1570,1631 .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta / \mathrm{ppm}=1.00(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.5,6 \mathrm{H}), 1.57(\mathrm{~d}$, $J=7.1,6 \mathrm{H}), 1.65(\mathrm{~m}, J \approx 2.1,3 \mathrm{H})\left(\mathrm{CH}_{3}\right)$, ca $1.64(\mathrm{~m}, 2 \mathrm{H}), 2.15$ $(\mathrm{m}, 2 \mathrm{H}), 3.62(\mathrm{br}, 2 \mathrm{H})\left(\mathrm{CH}_{2}\right), 3.29(\mathrm{~m}$, coupl. to 1.15 and $6.29,1 \mathrm{H}), 4.45$ (sept, $J=7.1,1 \mathrm{H})(\mathrm{CH}), 6.29(\mathrm{br}, \mathrm{d}, J=9.5$, NH), 7.78 (aryl). - ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$, gated decoupling): $\delta / \mathrm{ppm}=10.2(\mathrm{q}, J=131), 19.7(\mathrm{q}, J=128), 23.4(\mathrm{q}, J=127)$, $26.5(\mathrm{q}, J=125)\left(\mathrm{CH}_{3}\right), 27.1(\mathrm{t}, J=131), 32.8(\mathrm{t}, J=130), 39.2$ (t, J=128) (CH_{2}), $48.0(\mathrm{br}, \mathrm{C}), 50.2(\mathrm{~d}, J=140), 51.1(\mathrm{~d}$ $J=141$) (CH), $131.0(\mathrm{dd}, J=177$ and $6, m-\mathrm{C}), 131.3(\mathrm{t}, J=8$, i-C), $135.9(\mathrm{t}, J=3, o-\mathrm{C}), 139.8(\mathrm{t}, J=5, p-\mathrm{C}), 126.0(\mathrm{br}), 145.3$ (br), 150.0 (br), 152.9 (br) ($\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$). $-\mathrm{MS}(\mathrm{FAB}, m-$ nitrobenzyl alcohol): m / z 470/471/473 $\left(\mathrm{M}^{+}-\mathrm{SbCl}_{6}\right)$.
$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{Cl}_{9} \mathrm{~N}_{4} \mathrm{Sb}$ calcd.: C 34.30 H 4.00 N 6.96
(805.4) found: C 34.41 H 4.08 N 7.20.

2-(Cyclohexylimino)-3-(2,4,6-trichlorophenyl)-5-[(2,3,3-tri-methyl-1-cyclopentenyl)methyl]-1,3,4-thiadiazole (24)

A solution of $23 \mathrm{a}(8.20 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{ml}) / \mathrm{MeCN}$ $(100 \mathrm{ml})$ containing $\mathrm{NaHCO}_{3}(8.40 \mathrm{~g}, 100 \mathrm{mmol})$ and aqueous $\mathrm{NH}_{3}(25 \%, 20 \mathrm{ml})$ was stirred between 0° and $23^{\circ} \mathrm{C}$ for 4 h . The solvent was evaporated and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. Drying of the combined extracts over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvent afforded an oil, which slowly crystallized at $23^{\circ} \mathrm{C}$ from $\mathrm{EtOH}(40 \mathrm{ml})$ to furnish a colorless powder ($4.01 \mathrm{~g}, 82 \%$); m.p. $89-91^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr})$: $v / \mathrm{cm}^{-1}=1644(\mathrm{C}=\mathrm{N}) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=1.02(6 \mathrm{H})$, $1.61(\mathrm{t}, J=1.9)\left(\mathrm{CH}_{3}\right), 1.04-1.73(\mathrm{~m} ’ \mathrm{~s}, 12 \mathrm{H}), 2.25(\mathrm{br}, 2 \mathrm{H})$, $2.53(\mathrm{br}, 1 \mathrm{H}), 3.41(2 \mathrm{H}), 7.41$ (aryl). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=9.7,24.9,25.6,26.3,31.9,32.5,33.3,38.6,47.2$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{C}\right), 68.4(\mathrm{NCH}), 127.7,128.8,134.1,135.3,136.5$, 143.8 (aryl, $\mathrm{C}=\mathrm{C}$), 149.7, $152.0(\mathrm{C}=\mathrm{N}$).
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{~S}$ calcd.: C 56.97 H 5.82 N 8.67
(484.9) found: C 56.70 H 5.78 N 8.63.

References

[1] Q. Wang, J. C. Jochims, St. Köhlbrandt, L. Dahlenburg, M. Al-Talib, A. Hamed, A. E. Ismail, Synthesis 1992, 710
[2] Q. Wang, A. Amer, C. Troll, H. Fischer, J. C. Jochims, Chem. Ber. 1993, 126, 2519
[3] Q. Wang, A. Amer, S. Mohr, E. Ertel, J. C. Jochims, Tetrahedron 1993, 49, 9973
[4] Q. Wang, M. Al-Talib, J. C. Jochims, Chem. Ber. 1994, 127, 541
[5] Q. Wang, S. Mohr, J. C. Jochims, Chem. Ber. 1994, 127, 947
[6] Y. Guo, Q. Wang, J. C. Jochims, Synthesis 1996, 274
[7] Y. A. Al-Soud, W. Wirschun, N. A. Hassan, G.-M. Maier, J. C. Jochims, Synthesis, in press
[8] W. Wirschun, J. C. Jochims, Synthesis 1997, 233
[9] W. Wirschun, G.-M. Maier, J. C. Jochims, Tetrahedron 1997, 53, 5755
[10] N. Al-Masoudi, N. A. Hassan, Y. A. Al-Soud, P. Schmidt, A. M. Gaafar, M. Weng, S. Marino, A. Schoch, A. Amer, J. C. Jochims, J. Chem. Soc., Perkin Trans. I, in press
[11] M. W. Moon, J. Org. Chem. 1972, 37, 383
[12] M. W. Moon, J. Org. Chem. 1972, 37, 386
[13] M. W. Moon, J. Org. Chem. 1972, 37, 2005
[14] H. Gstach, P. Seil, Synthesis 1990, 803
[15] H. Gstach, P. Seil, Synthesis 1990, 808
[16] H. Gstach, P. Seil, Synthesis 1990, 1048
[17] R. T. Kroemer, H. Gstach, K. R. Liedl, B. M. Rode, J. Am. Chem. Soc. 1994, 116, 6277
[18] R. T. Kroemer, H. Gstach, K. R. Liedl, B. M. Rode, J. Chem. Soc., Perkin Trans. II 1994, 2129
[19] A. F. Hegarty, M. T. McCormack, G. Ferguson, P. J. Roberts, J. Am. Chem. Soc. 1977, 99, 2015
[20] A. F. Hegarty, Acc. Chem. Res. 1980, 13, 448
[21] V. M. Kolb, A. C. Kuffel, H. O. Spiwek, T. E. Janota, J. Org. Chem. 1989, 54, 2771
[22] G. L'abbé, G. Verhelst, S. Toppet, J. Org. Chem. 1976, 41, 3403
[23] G. L'abbé, G. Verhelst, L. Huybrechts, S. Toppet, J. Heterocycl. Chem. 1977, 14, 515
[24] Details of the crystal structure determinations may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the dispository number CSD-59453, the names of the authors, and the journal citation.
[25] G. Lepicardt, D. De Saint-Giniez, R. Jacquier, C. Rérat, C. R. Seances Acad. Sci., Ser C 1968, 267, 1786
[26] J.-L. Aubagnac, J. Elguero, B. Rérat, C. Rérat. Y. Uesu, C. R. Seances Acad. Sci., Ser C 1972, 274, 1192
[27] R. M. Claramunt, P. Cozzini, P. Domiano, J. Elguero, I. Forfar, A. Fruchier, J. Chem. Soc., Perkin Trans. II 1995, 1875
[28] J. L. Flippen, Acta Cryst. B 1972, 28, 2749
[29] H. Senda, H. Matsuoka, J. Maruha, Acta Cryst. C 1986, 42, 1087
[30] K. Cheung, A. Echevarria, S. Galembeck, M. Aparecida, M. Maciel, J. Miller, V. M. Rumjanek, A. M. Simas, Acta Cryst. C 1992, 48, 1471
[31] Y. Matsubara, K. Kitano, Y. Sasaki, M. Yoshihara, T. Maeshima, Bull. Chem. Soc. Jpn. 1993, 66, 3525
[32] J. Mintz, C. Walling, Org. Synth., Coll. Vol. V, Wiley, New York 1973, p. 184

Address for correspondence:
Prof. Dr. J. C. Jochims
Universität Konstanz, Fakultät für Chemie
Postfach 5560
D-78434 Konstanz
E-mail: johannes.jochims@uni-konstanz.de
Fax Int. 7531/883898

